
Journal of Artificial Intelligence Research X (2005) X Submitted 09/04; published X

Linking Search Space Structure, Run-Time Dynamics, and

Problem Difficulty: A Step Toward Demystifying Tabu

Search

Jean-Paul Watson jwatson@sandia.gov

Sandia National Laboratories
P.O. Box 5800, MS 1110
Albuquerque, NM 87185-1110 USA

L. Darrell Whitley whitley@cs.colostate.edu

Adele E. Howe howe@cs.colostate.edu

Computer Science Department

Colorado State University

Fort Collins, CO 80523 USA

Abstract

Tabu search is one of the most effective heuristics for locating high-quality solutions to
a diverse array of NP-hard combinatorial optimization problems. Despite the widespread
success of tabu search, researchers have a poor understanding of many key theoretical
aspects of this algorithm, including models of the high-level run-time dynamics and identi-
fication of those search space features that influence problem difficulty. We consider these
questions in the context of the job-shop scheduling problem (JSP), a domain where tabu
search algorithms have been shown to be remarkably effective. Previously, we demonstrated
that the mean distance between random local optima and the nearest optimal solution is
highly correlated with problem difficulty for a well-known tabu search algorithm for the
JSP introduced by Taillard. In this paper, we discuss various shortcomings of this measure
and develop a new model of problem difficulty that corrects these deficiencies. We show
that Taillard’s algorithm can be modeled with high fidelity as a simple variant of a straight-
forward random walk. The random walk model accounts for nearly all of the variability
in the cost required to locate both optimal and sub-optimal solutions to random JSPs,
and provides an explanation for differences in the difficulty of random versus structured
JSPs. Finally, we discuss and empirically substantiate two novel predictions regarding tabu
search algorithm behavior. First, the method for constructing the initial solution is highly
unlikely to impact the performance of tabu search. Second, tabu tenure should be selected
to be as small as possible while simultaneously avoiding search stagnation; values larger
than necessary lead to significant degradations in performance.

1. Introduction

Models of problem difficulty have excited considerable recent attention (Cheeseman, Kanef-
sky, & Taylor, 1991) (Clark, Frank, Gent, MacIntyre, Tomov, & Walsh, 1996) (Singer, Gent,
& Smaill, 2000). These models1 are designed to account for the variability in search cost
observed for one or more algorithms on a wide range of problem instances and have yielded

1. We refer to models of problem difficulty as cost models throughout this paper.
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significant insight into the relationship between search space structure, problem difficulty,
and algorithm behavior.

In this paper, we investigate cost models of tabu search for the job-shop scheduling prob-
lem (JSP). The JSP is an NP-hard combinatorial optimization problem and has become
one of the standard and most widely studied problems in scheduling research. Tabu search
algorithms are regarded as among the most effective approaches for generating high-quality
solutions to the JSP (Jain & Meeran, 1999) and currently represent the state-of-the-art by
a comfortable margin over the closest competition (Nowicki & Smutnicki, 2005) (Blażewicz,
Domschke, & Pesch, 1996). While researchers have achieved considerable advances in per-
formance since Taillard first demonstrated the effectiveness of tabu search algorithms for
the JSP in 1989, comparatively little progress has been made toward developing an under-
standing of how these algorithms work, i.e., characterizing the underlying high-level search
dynamics, understanding why these dynamics are so effective on the JSP, and deducing how
these dynamics might be modified to yield further improvements in performance.

It is well-known that the structure of the search space influences problem difficulty for
tabu search and other local search algorithms (Reeves, 1998). Consequently, a dominant
approach to developing cost models is to identify those features of the search space that are
highly correlated with search cost. We have performed extensive analyses of the relation-
ship between various search space features and problem difficulty for Taillard’s tabu search
algorithm for the JSP (Watson, Beck, Howe, & Whitley, 2001) (Watson, Beck, Howe, &
Whitley, 2003). Our findings were largely negative: many features that are widely believed
to influence problem difficulty for local search are, in fact, only weakly correlated with
problem difficulty. Features such as the number of optimal solutions (Clark et al., 1996),
the backbone size (Slaney & Walsh, 2001), and the mean distance between random local
optima (Mattfeld, Bierwirth, & Kopfer, 1999) account for less than a third of the total
variability in search cost for Taillard’s algorithm. In contrast, drawing from research on
problem difficulty for local search and MAX-SAT (Singer et al., 2000), we found that the
mean distance between random local optima and the nearest optimal solution, which we
denote dlopt-opt, is highly correlated with problem difficulty, accounting for at least 2/3 of
the total variability in search cost (Watson et al., 2003). We further demonstrated that
dlopt-opt accounts for much of the variability in the cost of locating sub-optimal solutions to
the JSP, and for differences in the relative difficulty of “square” versus “rectangular” JSPs.

Nevertheless, the dlopt-opt cost model has several shortcomings. First, the expense of
computing dlopt-opt limited our analyses to relatively small problem instances, raising con-
cerns regarding scalability to more realistically sized problem instances. Second, residuals
under the dlopt-opt model are large for a number of problem instances, and the model is
least accurate for the most difficult problem instances. Third, because the d lopt-opt model
provides no direct insight into the run-time behavior of Taillard’s algorithm, we currently
do not understand why dlopt-opt is so highly correlated with search cost.

We introduce a novel cost model that corrects for the aforementioned deficiencies of the
dlopt-opt cost model. This model, which based on a detailed analysis of the run-time behavior
of Taillard’s algorithm, is remarkably accurate, accounting for over 95% of the variability
in the cost of locating both optimal and sub-optimal solutions to a wide range of problem
instances. More specifically, we establish the following results:
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1. Search in Taillard’s algorithm appears to be effectively restricted to a sub-space S lopt+

of solutions that contains both local optima and solutions that are very close to
(specifically, 1-2 moves away from) local optima.

2. Taillard’s algorithm can be modeled with remarkable fidelity as a variant of a sim-
ple one-dimensional random walk over the Slopt+ sub-space. The walk exhibits two
notable forms of bias in the transition probabilities. First, the probability of search
moving closer to (farther from) the nearest optimal solution is proportional (inversely
proportional) to the current distance from the nearest optimal solution. Second,
search exhibits momentum: it is more likely to move closer to (farther from) the near-
est optimal solution if search previously moved closer to (farther from) the nearest
optimal solution. Moreover, the random walk model accounts for at least 96% of the
variability in the mean search cost across a range of test instances.

3. The random walk model is equally accurate for random, workflow, and flowshop JSPs.
However, major differences exist in the number of states in the walk, i.e., the maximal
possible distance between a solution and the nearest optimal solution. Differences in
these maximal distances fully account for well-known differences in the difficulty of
problem instances drawn from these various sub-classes.

4. The accuracy of the random walk model transfers to a tabu search algorithm based
on the powerful N5 move operator, which is more closely related to state-of-the-art
tabu search algorithms for the JSP than Taillard’s algorithm.

5. The random walk model correctly predicts that initiating Taillard’s algorithm from
high-quality starting solutions will only improve performance if those solutions are
very close to the nearest optimal solution.

6. The random walk model correctly predicts that any tabu tenure larger than the mini-
mum required to avoid search stagnation is likely to increase the fraction of the search
space explored by Taillard’s algorithm, and as a consequence yield a net increase in
problem difficulty. Informally, the detrimental nature of large tabu tenures is often
explained simply by observing that large tenures impact search through the loss of
flexibility and the resulting inability to carefully explore the space of neighboring so-
lutions. Our results provide a more detailed and concrete account of this phenomenon
in the context of the JSP.

The remainder of this paper is organized as follows. We begin in Sections 2 and 3
with a description of the JSP, Taillard’s algorithm, and the problem instances used in our
analysis. The hypothesis underlying our analysis is detailed in Section 4. We summarize
and critique prior research on problem difficulty for tabu search algorithms for the JSP
in Section 5. Sections 6 through 9 form the core of the paper, in which we develop and
validate our random walk model of Taillard’s algorithm. In Section 10 we explore the
applicability of the random walk model to more structured problem instances. Section 11
explores the applicability of the random walk model to a tabu search algorithm that is
more representative of state-of-the-art algorithms for the JSP than Taillard’s algorithm.
Section 12 details two uses of the random walk model in a predictive capacity. We conclude
by discussing the implications of our results and directions for future research in Section 13.
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2. Problem and Test Instances

We consider the well-known n × m static, deterministic JSP in which n jobs must be
processed exactly once on each of m machines (Blażewicz et al., 1996). Each job i (1 ≤ i ≤
n) is routed through each of the m machines in a pre-defined order πi, where πi(j) denotes
the jth machine (1 ≤ j ≤ m) in the routing order of job i. The processing of job i on
machine πi(j) is denoted oij and is called an operation. An operation oij must be processed
on machine πi(j) for an integral duration τij ≥ 0. Once initiated, processing cannot be
pre-empted and concurrency on individual machines is not allowed, i.e., the machines are
unit-capacity resources. For 2 ≤ j ≤ m, oij cannot begin processing until oi(j−1) has
completed processing. The scheduling objective is to minimize the makespan Cmax, i.e.,
the completion time of the last operation of any job. Makespan-minimization for the JSP
is NP -hard for m ≥ 2 and n ≥ 3 (Garey, Johnson, & Sethi, 1976).

An instance of the n×m JSP is uniquely defined by the set of nm operation durations
τij and n job routing orders πi. We define a random JSP as an instance generated by (1)
sampling the τij independently and uniformly from an interval [LB,UB] and (2) constructing
the πi from random permutations of the integer sequence ζ = 1, . . . ,m. Most often LB = 1
and UB = 99 (Taillard, 1993) (Demirkol, Mehta, & Uzsoy, 1998). The majority of JSP
benchmark instances, including most found in the OR Library2, are random JSPs.

Non-random JSPs can be constructed by imposing structure on either the τij, the πi,
or both. To date, researchers have only considered instances with structured πi, although
it is straightforward to adapt existing methods for generating non-random τij for flow shop
scheduling problems (Watson, Barbulescu, Whitley, & Howe, 2002) to the JSP. One ap-
proach to generating structured πi involves partitioning the set of m machines into wf
contiguous, equally-sized subsets called workflow partitions. For example, when wf = 2, the
set of m machines is partitioned into two subsets containing the machines 1 through m/2
and m/2 + 1 through m, respectively. In such a two-partition scheme, every job must be
processed on all machines in the first partition before proceeding to any machine in the
second partition. No constraints are placed on the job routing orders within each partition.
We refer to JSPs with wf = 2 simply as workflow JSPs. Less common are flowshop JSPs,
where wf = m, i.e., all of the jobs visit the machines in the same pre-determined order.

While the presence of structure often makes scheduling problems easier to solve (Watson
et al., 2002), this is not the case for JSPs with structured πi. Given fixed n and m, the
average difficulty of problem instances – as measured by the cost required to either locate
an optimal solution or to prove the optimality of a solution – is empirically proportional to
wf. In other words, random JSPs are generally the easiest instances, while flowshop JSPs
are the most difficult. Evidence for this observation stems from a wide variety of sources.
For example, Storer et al. (1992) introduced sets of 50 × 10 random and workflow JSPs
in 1992; the random JSPs were quickly solved to optimality, while the optimal makespans
of all but one of the workflow JSPs are currently unknown. Similarly, the most difficult
10×10 benchmark problems, Fisher and Thompson’s infamous 10×10 instance and Apple-
gate and Cook’s (1991) orb instances, are all “nearly” workflow or flowshop JSPs, in that
the requirement that a job be processed on all machines in one workflow partition before
proceeding to any machine in the next workflow partition is slightly relaxed.

2. http://www.brunel.ac.uk/depts/ma/research/jeb/orlib/jobshopinfo.html
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Accurate cost models of local search algorithms are generally functions of the set of
globally optimal solutions to a problem instance (Watson et al., 2003) (Singer et al., 2000),
and the cost models we develop here further emphasize this dependency. Due in part to
the computational cost of enumeration, our analysis is largely restricted to sets of 6×4 and
6× 6 random, workflow, and flowshop JSPs. Each set contains 1,000 instances apiece, with
the τij sampled from the interval [1, 99]. To assess the scalability of our cost models, we also
use a set of 100 10×10 random JSPs, where the τij are uniformly sampled from the interval
[1, 99]. In Section 10, we consider sets of 10 × 10 workflow and flowshop JSPs generated
in an analogous manner. For comparative purposes with the literature, we additionally
report results for various 10 × 10 instances found in the OR Library. Although the 10 × 10
OR Library instances are no longer considered particularly challenging, they have received
significant historical attention and serve to validate results obtained using our own 10 × 10
problem set. For each instance in each of the aforementioned problem sets, a variant of
Beck and Fox’s (2000) constraint-directed scheduling algorithm was used to compute both
the optimal makespan and the set of optimal solutions.

3. The Algorithm: Tabu Search and the JSP

Numerous tabu search algorithms have been developed for the JSP (Jain & Meeran, 1999).
For our analysis, we select an algorithm introduced by Taillard in 1994. We implemented
a variant of Taillard’s algorithm, which we denote TSN1

3, and easily reproduced results
consistent with those reported by Taillard. TSN1 is not a state-of-the-art tabu search
algorithm for the JSP; the algorithms of Nowicki and Smutnicki (2005), Pezzella and Merelli
(2000), and Barnes and Chambers (1995) yield stronger overall performance. All of these
algorithms possess a core tabu search mechanism that is very similar to that found in TSN1 ,
but differ in the choice of move operator, the method used to generate initial solutions, and
the use of long-term memory mechanisms such as reintensification.

Our choice of TSN1 is pragmatic. Before tackling more complex, state-of-the-art algo-
rithms, we first develop cost models of a relatively simple but representative version of tabu
search and then systematically assess the influence of more complex algorithmic features
on cost models of the basic algorithm. Consequently, our implementation of TSN1 deviates
from Taillard’s original algorithm in three respects. First, we compute solution makespans
exactly instead of using a computationally efficient estimation scheme. Second, we do not
use frequency-based memory; Taillard (1994, p. 100) indicates that the benefit of such
memory is largely restricted to instances requiring a very large number (i.e., > 1 million) of
iterations. Third, we initiate trials of TSN1 from random local optima (using a scheme de-
scribed below) instead of those resulting from Taillard’s deterministic construction method.
As discussed in Section 12.1, there is strong evidence that the type of the initial solution
has a negligible impact on the speed with which TSN1 locates optimal solutions, which we
take as the primary objective in our analysis.

3. TSN1 is identical to the algorithm denoted TSTaillard in our earlier paper (Watson et al., 2003); the
new notation was chosen to better convey the fact that the algorithm deviates from Taillard’s original
algorithm in several respects and to emphasize the relative importance of the move operator.
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TSN1 uses van Laarhoven et al.’s (1992) well-known N1 move operator, which swaps
adjacent operations on critical blocks in the schedule.4 In our implementation, and in
contrast to many local search algorithms for the JSP (Nowicki & Smutnicki, 1996), all
pairs of adjacent critical operations are considered and not just those on a single critical
path. At each iteration of TSN1 , the makespan of each neighbor of the current solution s
is computed and the non-tabu neighbor s′ ∈ N1 (s) with the smallest makespan is selected
for the next iteration; ties are broken randomly. Let (oij , okl) denote the pair of adjacent
critical operations that are swapped in s to generate s′, such that oij appears before okl in
the processing order of machine πi(j). In the subsequent L iterations, TSN1 prevents or
labels as “tabu” any move that inverts the operation pair (okl, oij). The idea, a variant of
frequency-based memory, is to prevent recently swapped pairs of critical operations from
being re-established. The scalar L is known as the tabu tenure and is uniformly sampled
every 1.2Lmax iterations from a fixed-width interval [Lmin, Lmax]; such dynamic tabu tenures
can avoid well-known cyclic search behaviors associated with fixed tabu tenures (Glover &
Laguna, 1997). Let sbest denote the best solution located during any iteration of the current
run or trial of TSN1 . When Cmax(s

′) < Cmax(sbest), the tabu status of s′ is negated; in
other words, TSN1 employs a simple aspiration level criterion. In rare cases, the minimal
neighboring makespan may be achieved by both non-tabu and tabu-but-aspired moves, in
which case a non-tabu move is always accepted. If all moves in N1 (s) are tabu, no move is
accepted for the current iteration. We observe that in the absence of tabu moves preventing
improvement of the current solution’s makespan, TSN1 acts as a simple greedy descent
procedure. More specifically, it is clear that the core search bias exhibited by TSN1 is
steepest-descent local search, such that there is significant pressure toward local optima.

Tabu tenure can have a major impact on performance. Based on empirical tests, Taillard
defines Lmin = 0.8X and Lmax = 1.2X, where X = (n+m/2) ·e−n/5m +N/2 ·e−5m/n; n and
m are respectively the number of jobs and machines in the problem instance and N = nm.
In preliminary experimentation, we observed that the resulting tenure values for our 6 × 4
and 6 × 6 problem sets (respectively [3, 5] and [4, 6]) failed to prevent cycling or stagnation
behavior. Instead, we set [Lmin, Lmax] equal to [6, 14] for all trials involving these instances
and re-sample the tabu tenure every 15 iterations. For 10×10 instances we set [Lmin, Lmax]
equal to [8, 14] for all trials and again re-sample the tabu tenure every 15 iterations; the
specific values are taken from (Taillard, 1994), who also ignored the aforementioned rule for
trials involving 10× 10 instances. Taillard’s rules are used unmodified in all trials involving
larger problem instances, e.g., those analyzed below in Section 4.

3.1 Cost and Distance Metrics

Unlike more effective JSP move operators such as N5 (Nowicki & Smutnicki, 1996), the N1
operator induces search spaces that are connected, in that it is always possible to move from
an arbitrary solution to a global optimum. Consequently, it is possible to construct a local
search algorithm based on N1 that is probabilistically approximately complete (PAC) (Hoos,
1998), such that an optimal solution will eventually be located given sufficiently large run-
times. Our experimental results suggest that TSN1 is PAC, subject to reasonable settings for
the tabu tenure; given our rules for selecting Lmin and Lmax, no trial of TSN1 failed to locate

4. Our notation for move operators is taken from Blażewicz (1996).
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an optimal solution to any of the problem instances described in Section 2. In particular,
the tabu tenure must be large enough for TSN1 to escape local optima; using short tabu
tenures, it is straightforward to construct examples where TSN1 will become permanently
trapped in the attractor basin of a single local optimum. To be provably PAC under general
parameter settings, the TSN1 algorithm would likely require modifications enabling it to
accept an arbitrary move at any given iteration, allowing search to always progress toward
a global optimum; Hoos (1998) discusses similar requirements in the context of PAC local
search algorithms for MAX-SAT. We have not pursued such modifications because they
ignore practical efficiency issues associated with poor parameter value selection, and because
it is unclear how the induced randomness would impact the core tabu search dynamics.

The empirical PAC property enables us to naturally define the cost required to solve a
given problem instance for a single trial of TSN1 as the number of iterations required to
locate a globally optimal solution. In general, search cost under TSN1 is a random variable
with an approximately exponential distribution, as we discuss in Section 9. Consequently,
we define the search cost for a given problem instance as either the median or mean number
of iterations required to locate an optimal solution; the respective quantities are denoted
by cQ2 and c. We estimate both cQ2 and c using 1,000 independent trials. Due to the
exponential nature of the underlying distribution, a large number of samples is required to
achieve reasonably accurate estimates of both statistics.

Our analysis relies on the notion of the distance D(s1, s2) between two solutions s1 and
s2, which we take as the well-known disjunctive graph distance (Mattfeld et al., 1999).
Let γ(i, j, k, s) denote a predicate that determines whether job j appears before job k in
the processing order of machine i of solution s. The disjunctive graph distance D(s1, s2)
between s1 and s2 is then defined as

D(s1, s2) =
m∑

i=1

n−1∑

j=1

n∑

k=j+1

γ(i, j, k, s1) ⊕ γ(i, j, k, s2)

where the symbol ⊕ denotes the Boolean XOR operator. Informally, the disjunctive graph
distance simply captures the degree of heterogeneity observed in the machine processing
sequences of two solutions. A notable property of the disjunctive graph distance is that it
serves as a lower bound, which is empirically tight, on the number of N1 moves required
to transform s1 into s2. This is key in our analysis, as computation of the exact number of
N1 moves required to transform s1 into s2 is NP-hard (Vaessens, 1995). In the remainder
of this paper, we use the terms “distance” and “disjunctive graph distance” synonymously.

Finally, we define a “random local optimum” as a solution resulting from the application
of steepest-descent local search under the N1 operator to a random semi-active solution.
A semi-active solution is defined as a feasible solution (i.e., lacking cyclic ordering depen-
dencies) in which all operations are processed at their earliest possible starting time. To
construct random semi-active solutions, we use a procedure described in (Mattfeld, 1996,
Section 2.2). The steepest-descent procedure employs random tie-breaking in the presence
of multiple equally good alternatives and terminates once a solution s is located such that
∀s′ ∈ N1 (s), Cmax(s) ≤ Cmax(s

′).
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4. The Run-Time Behavior of TSN1 : Motivating Observations

For a given problem instance, consider the space of feasible solutions S and the sub-space
Slopt ⊆ S containing all local optima. Due to the strong bias toward local optima induced
by the core steepest-descent strategy, we expect TSN1 to frequently sample solutions in Slopt

during search. However, the degree to which solutions in Slopt are actually representative of
solutions visited by TSN1 is a function of both the strength of local optima attractor basins
in the JSP and the specifics of the short-term memory mechanism. In particular, strong
attractor basins would require TSN1 to move far away from local optima in order to avoid
search stagnation. Recently, Watson (2003) showed that the attractor basins of local optima
in the JSP are surprisingly weak in general and can be escaped with high probability simply
by (1) accepting a short random sequence (i.e., of length 1 or 2 elements) of monotonically
worsening moves and (2) re-initiating greedy descent. In other words, relatively small
perturbations are sufficient to move local search out of the attractor basin of a given local
optimum in the JSP. We observe that the aforementioned procedure provides an operational
definition of attractor basin strength, e.g., a specific escape probability given a “worsening”
random sequence of length k, in contrast to more informal notions such as narrowness,
width, or diameter.

Based on these observations, we hypothesize that search in TSN1 is effectively restricted
to the sub-space Slopt+ ⊃ Slopt containing both local optima and solutions that are very
close to local optima in terms of disjunctive graph distance or, equivalently, the number
of N1 moves. To test this hypothesis, we monitor the descent distance of solutions visited
by TSN1 during search on a range of random JSPs taken from the OR Library. We define
the descent distance of a candidate solution s as the disjunctive graph distance D(s, s ′)
between s and a local optimum s′ generated by applying steepest-descent under the N1
operator to s. In reality, descent distance is stochastic due to the use of random tie-
breaking during steepest-descent. We avoid exact characterization of descent distance for
any particular s and instead compute descent distance statistics over a wide range of s. For
each problem instance, we execute TSN1 for one million iterations, computing the descent
distance of the current solution at each iteration and recording the resulting time-series;
trials of TSN1 are terminated once an optimal solution is encountered and re-started from a
random local optimum. Several researchers have introduced measures that are conceptually
related to descent distance, but are in contrast based on differences in solution fitness. For
example, search depth (Hajek, 1988) (Hoos & Stützle, 2005, p. 244) is defined as the minimal
increase in fitness (assuming minimization) that must be accepted in order to escape a local
optimum attractor basin. Similarly, Schuurmans and Southey (2001) define search depth
as the difference between the fitness of a solution s and that of a global optimum s∗.

Summary statistics for the resulting descent distances are reported in Table 1; for com-
parative purposes, we additionally report the mean descent distance observed for one million
random semi-active solutions. The mean and median descent distance statistics indicate
that TSN1 consistently remains only 1–2 moves away from local optima, independent of
problem size. Although search is occasionally driven very far from local optima, such events
are rare - as corroborated by the low standard deviations. Empirical evidence suggests that
large-distance events are not due to the existence of local optima with very deep attractor
basins, but are rather an artifact of TSN1 ’s short-term memory mechanism. These results

8



Demystifying Tabu Search

Descent Distance
Under TSN1 Mean Descent Distance

Size Instance Median Mean Std. Dev. Max. for Random Solutions

10 × 10 la16 1 1.84 1.78 20 12.43

10 × 10 la17 1 1.96 1.86 16 13.03

10 × 10 la18 2 2.06 1.94 18 13.42

10 × 10 la19 2 2.15 1.94 18 13.99

10 × 10 la20 2 2.22 1.94 20 13.00

10 × 10 abz5 2 2.16 1.95 16 13.96

10 × 10 abz6 2 2.12 1.89 16 12.95

15 × 15 ta01 1 1.95 1.97 18 24.38

20 × 15 ta11 1 1.51 1.83 21 30.07

20 × 20 ta21 2 2.28 2.24 24 34.10

30 × 15 ta31 1 2.00 2.20 20 39.27

30 × 20 ta41 1 1.68 2.02 36 46.19

50 × 15 ta51 1 1.86 2.35 28 45.11

50 × 20 ta61 2 2.25 2.56 60 55.50

100 × 20 ta71 1 2.50 3.16 40 71.26

Table 1: Descent distance statistics for TSN1 on select random JSPs from the OR Library.
Statistics are taken over time-series of length one million iterations. Results for
random solutions are computed using one million random semi-active solutions.

support our hypothesis that search in TSN1 is largely restricted to the sub-space of feasible
solutions containing both local optima and solutions that are very close (in terms of dis-
junctive graph distance) to local optima. Two factors enable this behavior: the strong bias
toward local optima that is induced by the core steepest-descent strategy of TSN1 and the
relative weakness of attractor basins in the JSP. These factors also enable TSN1 to ignore
substantial proportions of the search space, as the mean descent distance under TSN1 is
only a fraction of the descent distance of random semi-active solutions.

The primary purpose of short-term memory in tabu search is to enable escape from
local optima (Glover & Laguna, 1997). We recall that TSN1 does not employ any long-term
memory mechanism. Given (1) the absence of an explicit high-level search strategy and (2)
the lack of any a priori evidence to suggest that TSN1 is biased toward specific, e.g., high-
quality, regions of Slopt+, we propose the following hypothesis: TSN1 is simply performing a
random walk over the Slopt+ sub-space. If true, problem difficulty should be correlated with
|Slopt+|, the size of the Slopt+ sub-space. Implicit in this assertion is the assumption that
the connectivity in Slopt+ is sufficiently regular such that optimal solutions are not isolated
relative to the rest of the search space, e.g., only reachable through a few highly improbable
pathways. Finally, we observe that the presence of multiple optimal solutions reduces the
proportion of Slopt+ that must be explored, on average, before a globally optimal solution
is encountered. Consequently, we focus instead on the effective size of S lopt+, which we
denote by |Slopt+|

′. For now, this measure is only an abstraction used to capture the notion
that problem difficulty is a function of |Slopt+| and the number and distribution of globally
optimal solutions within that sub-space. Specific estimates for |Slopt+|

′ are considered below
in Sections 5 through 7.
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5. Static Cost Models: A Summary and Critique of Prior Research

With the exception of research on phase transitions in mean instance difficulty (Clark et al.,
1996), all existing cost models of local search algorithms are based on structural analyses of
the underlying fitness landscapes. Informally, a fitness landscape is a vertex-weighted graph
in which the vertices represent candidate solutions, the vertex weights represent the fitness
or worth of solutions, and the edges capture solution adjacency relationships induced by a
neighborhood or move operator (c.f., (Reeves, 1998) and (Stadler, 2002)).

Previously, we analyzed the relationship between various fitness landscape features and
problem difficulty for TSN1 (Watson et al., 2001, 2003). We used regression methods
to construct statistical models relating one or more (optionally transformed) landscape
features, e.g., the logarithm of the number of optimal solutions, to the transformed cost
log10(cQ2) required to locate optimal solutions to 6 × 4 and 6 × 6 random JSPs. Because
they are based on static, time-invariant features of the fitness landscape, we refer to these
models as static cost models. The accuracy of a static cost model can be quantified as
the regression r2, i.e., the proportion of the total variability in search cost accounted for
by the model. Most of the models we considered were based on simple linear regression
over unitary features, such that the r2 captured variability under the assumption of a linear
functional relationship between landscape features and search cost. We found that the
accuracy of static cost models based on well-known landscape features such as the number
of optimal solutions (Clark et al., 1996), the backbone size (Slaney & Walsh, 2001), and
the average distance between random local optima (Mattfeld et al., 1999) was only weak-
to-moderate, with r2 ranging from 0.22 to 0.54. Although not reported, we additionally
investigated measures such as fitness-distance correlation (Boese, Kahng, & Muddu, 1994)
and landscape correlation length (Stadler, 2002) – measures that are much more commonly
investigated in operations research and evolutionary computing than in AI – and obtained
even lower r2 values.

Drawing from research on MAX-SAT (Singer et al., 2000), we then demonstrated that a
static cost model based on the mean distance between random local optima and the nearest
optimal solution, which we denote dlopt-opt, is significantly more accurate, yielding r2 values
of 0.83 and 0.65 for 6× 4 and 6× 6 random JSPs, respectively. As shown in the left side of
Figure 1, the actual cQ2 for 6×6 random JSPs is typically within a factor of 10 (i.e., no more
than 10 times and no less than 1/10) of the predicted cQ2, although in a few exceptional
cases the observed differences exceed a factor of 100. Additionally, we showed that the
dlopt-opt model accounts for most of the variability in the cost required to locate sub-optimal
solutions to these same problem instances and provides an explanation for differences in the
relative difficulty of “square” (n/m ≈ 1) versus “rectangular” (n/m � 1) random JSPs.

For the variant of the dlopt-opt measure associated with MAX-SAT, Singer (2000, p.
67) speculates that instances with large dlopt-opt are more difficult due to “... initial large
distance from the [optimal] solutions or the extensiveness of the ... area in which the
[optimal] solutions lie, or a combination of these factors.” Building on this observation, we
view dlopt-opt as a concrete measure of |Slopt+|

′, specifically because dlopt-opt simultaneously
accounts for both the size of Slopt+ and the distribution of optimal solutions within Slopt+.
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Figure 1: Scatter-plots of dlopt-opt versus cQ2 for 6× 6 (left figure) and 10× 10 (right figure)
random JSPs; the least-squares fit lines are super-imposed.

In doing so, we assume that random local optima are representative of solutions in S lopt+,
which is intuitively justifiable given the low mean search depth observed under TSN1 .5

In support of our view concerning the key role of |Slopt+|
′ in problem difficulty, we

observe that the other static cost models of TSN1 considered in (Watson et al., 2001, 2003)
are based on landscape features (the backbone size, the number of optimal solutions, or
the average distance between local optima) that quantify either the size of S lopt+ or the
number/distribution of optimal solutions, but not both. In other words, the underlying
measures fail to capture one of the two key dimensions of |Slopt+|

′.

Despite its explanatory power, we previously identified several deficiencies of the d lopt-opt

cost model (Watson et al., 2003). First, the model is least accurate for the most difficult
problem instances within a fixed-size group. Second, the model fails to account for a non-
trivial proportion (≈ 1/3) of the variability in problem difficulty for 6 × 6 random JSPs.
Third, model accuracy fails to transfer to more structured workflow JSPs.

5.1 An Analysis of Scalability

Differences in the accuracy of the dlopt-opt model on 6 × 4 and 6 × 6 random JSPs also
raise concerns regarding scalability to larger, more realistically sized problem instances.
Empirically, we have observed that the mean number of optimal solutions in random JSPs
grows rapidly with increases in problem size. When coupled with the difficulty of “square”
instances with n ≈ m > 10, the resulting cost of computing both dlopt-opt and cQ2 previously
restricted our analysis to 6×4 and 6×6 random JSPs. However, with newer microprocessors,
we are now able to assess the accuracy of the dlopt-opt cost model on larger random JSPs.

We compute dlopt-opt for the 92 of our 100 10 × 10 random JSPs with ≤ 50 million
optimal solutions; the computation is unpractical for the remaining 8 instances. Estimates

5. As discussed in Section 6, empirical data obtained during our search for more accurate cost models of
TSN1 ultimately forces us to retract, or more precisely modify, this assumption. However, restrictions
on the Slopt+ sub-space still play a central role in all subsequent cost models.
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of dlopt-opt are based on 5,000 random local optima. We show a scatter-plot of dlopt-opt

versus cQ2 for these problem instances in the right side of Figure 1. The r2 value of the
corresponding regression model is 0.46, which represents a 33% decrease in model accuracy
relative to the 6× 6 problem set. This result demonstrates the failure of the d lopt-opt model
to scale to larger JSPs. We observe similar drops in accuracy for static cost models based on
the number of optimal solutions, the backbone size, and the mean distance between random
local optima (Watson, 2003). Unfortunately, we cannot currently assess larger rectangular
instances due to the vast numbers (i.e., tens of billions) of optimal solutions.

6. Accounting for Search Bias: A Quasi-Dynamic Cost Model

The deficiencies of the dlopt-opt cost model indicate that either (1) dlopt-opt is not an entirely
accurate measure of |Slopt+|

′ or (2) our random walk hypothesis is incorrect, i.e., |Slopt+|
′

is not completely indicative of problem difficulty. We now focus on the first alternative,
with the goal of developing a more accurate measure of |Slopt+|

′ than dlopt-opt. Instead of
random local optima, we instead consider the set of solutions visited by TSN1 during search.
We refer to the resulting cost model as a quasi-dynamic cost model. The “quasi-dynamic”
modifier derives from the fact that although algorithm dynamics are taken into account, an
explicit model of run-time behavior is not constructed.

We develop our quasi-dynamic cost model of TSN1 by analyzing the distances between
solutions visited during search and the corresponding nearest optimal solutions. Let dopt(s)
denote the distance between a solution s and the nearest optimal solution, i.e., dopt(s) =
minx∈S∗D(x, s) where S∗ denotes the set of optimal solutions. Let Xtabu denote the set
of solutions visited by TSN1 during an extended run on a given problem instance, and let
Xrlopt denote a set of random local optima. We then define dtabu-opt (dlopt-opt) as the mean
distance dopt(s) between solutions s ∈ Xtabu (s ∈ Xrlopt) and the nearest optimal solution.

Figure 2 shows empirical distributions of dopt(s) for the Xrlopt and Xtabu of two 10 ×
10 random JSPs. Both types of distribution are generally symmetric and Gaussian-like,
although we infrequently observe skewed distributions both with and without heavier-than-
Gaussian tails. Deviations from the Gaussian ideal are more prevalent in the smaller 6 × 4
and 6×6 problem sets. In all of our test instances, dtabu-opt < dlopt-opt, i.e., TSN1 consistently
visits solutions that on average are closer to an optimal solution than randomly generated
local optima. Similar observations hold for solution quality, such that solutions in Xtabu

consistently possess lower makespans than solutions in Xrlopt.

The histograms shown in Figure 2 serve as illustrative examples of two types of search
bias exhibited by TSN1 . First, search is strongly biased toward solutions that are an “aver-
age” distance between the nearest optimal solution and solutions that are maximally distant
from the nearest optimal solution. Second, random local optima are not necessarily rep-
resentative of the set of solutions visited during search, contradicting the assumption we
stated previously in Section 5. Although search in TSN1 is largely restricted to Slopt+, there
potentially exist large portions of Slopt+ – for reasons we currently do not fully understand –
that TSN1 is unlikely visit. Failure to account for these unexplored regions will necessarily
yield conservative estimates of |Slopt+|

′. We observe that these results do not contradict
our random walk hypothesis; rather, we still assert that TSN1 is performing a random walk
over a potentially restricted sub-set of Slopt+.
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Figure 2: Histograms of the distance to the nearest optimal solution for both random local
optima and solutions visited by TSN1 for two example 10×10 random JSPs (each
figure corresponds to a unique problem instance).

We believe that the deficiencies of the dlopt-opt model are due in large part to the failure of
the underlying measure to accurately depict the sub-space of solutions likely to be explored
by TSN1 . In contrast, the dtabu-opt measure by definition accounts for the set of solutions
likely to be visited by TSN1 . Consequently, we hypothesize that a quasi-dynamic cost
model based on the dtabu-opt measure should yield significant improvements in accuracy over
the static dlopt-opt cost model. As evidence for this hypothesis, we observe that although
discrepancies between the distributions of dopt(s) for random local optima and solutions
visited by TSN1 were minimal in our 6×4 problem sets, significant differences were observed
in the larger 6 × 6 and 10 × 10 problem sets – the same instances for which the d lopt-opt

model is least accurate. To further illustrate the magnitude of the differences, we observe
that for the 42 of our 10× 10 random JSPs with ≤ 100,000 optimal solutions, dtabu-opt is on
average 37% lower than dlopt-opt. For the same instances, the solutions in Xtabu on average
possess a makespan 13% lower than those of solutions in Xrlopt.

We now quantify the accuracy of the dtabu-opt quasi-dynamic cost model on 6× 4, 6× 6,
and 10×10 random JSPs. For any given instance, we construct Xtabu using solutions visited
by TSN1 over a variable number of independent trials. A trial is initiated from a random
local optimum and terminated once a globally optimal solution is located. The termination
criterion is imposed because there exist globally optimal solutions from which no moves are
possible under the N1 move operator (Nowicki & Smutnicki, 1996). We terminate the entire
process, including the current trial, once |Xtabu|=100,000. The resulting Xtabu are then used
to compute dtabu-opt; the large number of samples is required to achieve reasonably accurate
estimates of this statistic.

Scatter-plots of dtabu-opt versus cQ2 for the 6 × 4 and 6× 6 problem sets are respectively
shown in the upper left and upper right sides of Figure 3. Regression models of dtabu-opt

versus log10(cQ2) yield respective r2 values of 0.84 and 0.78, corresponding to 4% and 20%
increases in accuracy relative to the dlopt-opt cost model. The actual cQ2 typically deviate
from the predicted cQ2 by no more than a factor of five and we observe fewer and less
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Figure 3: Scatter-plots of dtabu-opt versus search cost cQ2 for 6 × 4 (upper left figure), 6 × 6
(upper right figure), and 10 × 10 (lower figure) random JSPs; the least-squares
fit lines are super-imposed.

extreme large-residual instances than under the dlopt-opt model (only three out of 2,000 data
points differ by more than a factor of 10.)

For the set of 42 10 × 10 random JSPs with ≤ 100,000 optimal solutions,6 a regression
model of dtabu-opt versus log10(cQ2) yields an r2 value of 0.66 (see the lower portion of
Figure 3); the computation of dtabu-opt is unpractical for the remaining instances. The
resulting r2 is 41% greater than that observed for the dlopt-opt model on the same instances.
Further, the actual cQ2 is typically within a factor of 5 of the predicted cQ2 and in no
case is the discrepancy larger than a factor of 10. We have also annotated the scatter-plot
shown in the lower portion of Figure 3 with data for those five of the seven 10× 10 random
JSPs present in the OR Library with ≤ 100, 000 optimal solutions. The abz5 and la19

6. Our selection criterion does not lead to a clean distinction between easy and hard problem instances;
the hardest 10 × 10 instance has approximately 1.5 million optimal solutions. However, instances with
≤ 100,000 optimal solutions are generally more difficult, with a median cQ2 of 65,710, versus 13,291 for
instances with more than 100,000 optimal solutions.
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instances have been found to be the most difficult in this set (Jain & Meeran, 1999), which
is consistent with the observed values of dtabu-opt.

In conclusion, TSN1 is highly unlikely to visit large regions of the search space for many
problem instances. As a consequence, measures of |Slopt+|

′ based on purely random local
optima are likely to be conservative and inaccurate, providing a partial explanation for the
failures of the dlopt-opt model. In contrast, the dtabu-opt measure by definition accounts for this
phenomenon, yielding a more accurate measure of |Slopt+|

′ and a more accurate cost model.
However, despite the significant improvements in accuracy, the d lopt-opt and dtabu-opt do share
two fundamental deficiencies: accuracy still fails to scale to larger problem instances, and
the models provide no direct insight into the relationship between the underlying measures
and algorithmic run-time dynamics.

7. A Dynamic Cost Model

The dlopt-opt and dtabu-opt cost models provide strong evidence that TSN1 is effectively per-
forming a random walk over a potentially restricted subset of the Slopt+ sub-space. However,
we have yet to propose any specific details, e.g., the set of states in the model or the quali-
tative nature of the transition probabilities. The dynamic behavior of any memoryless local
search algorithm, e.g., iterated local search (Lourenco, Martin, & Stützle, 2003) and simu-
lated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), can, at least in principle, be modeled
using Markov chains: the set of feasible solutions is known, the transition probabilities
between neighboring solutions can be computed, and the Markov property is preserved.
Local search algorithms augmented with memory, e.g., tabu search, can also be modeled as
Markov chains by embedding the contents of memory into the state definition, such that
the Markov property is preserved. Although exact, the resulting models generally require
at least (depending on the complexity of the memory) an exponential number of states –

O(2m·(n

2)) in the JSP – and therefore provide little insight into the qualitative nature of the
search dynamics. The challenge is to develop aggregate models in which large numbers of
states are grouped into meta-states, yielding more tractable and consequently understand-
able Markov chains.

7.1 Definition

To model the impact of short-term memory on the behavior of TSN1 , we first analyze how
search progresses either toward or away from the nearest optimal solution. In Figure 4, we
show a time-series of the distance to the nearest optimal solution for both a random walk
under the N1 move operator and TSN1 on a typical 10×10 random JSP. We obtain similar
results on a sampling of random 6×4 and 6×6 JSPs, in addition to a number of structured
problem instances. The random walk exhibits minimal short-term trending behavior, with
search moving away from or closer to an optimal solution with roughly equal probability.
In contrast, we observe strong regularities in the behavior of TSN1 . The time-series shown
in the right side of Figure 4 demonstrates that TSN1 is able to maintain search gradients
for extended periods of time. This observation leads to the following hypothesis: the short-
term memory mechanism of TSN1 acts to consistently bias search either toward or away
from the nearest optimal solution.

15



Watson, Whitley, & Howe

30

40

50

60

70

80

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500

D
is

ta
n

c
e

 t
o

 t
h

e
 n

e
a

re
s
t 

o
p

ti
m

a
l 
s
o

lu
ti
o

n

Iteration #

30

40

50

60

70

80

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500

D
is

ta
n

c
e

 t
o

 t
h

e
 n

e
a

re
s
t 

o
p

ti
m

a
l 
s
o

lu
ti
o

n

Iteration #

Figure 4: Time-series of the distance to the nearest optimal solution for solutions visited
by a random walk (left figure) and TSN1 (right figure) for a 10× 10 random JSP.

Based on this hypothesis, we define a state Sx,i in our Markov model of TSN1 as a
pair representing both (1) the set of solutions distance i from the nearest optimal solution
and (2) the current search gradient x. We denote the numeric values x ∈ [−1, 0, 1] with
the symbols closer, equal, and farther, respectively. In effect, we are modeling the impact of
short-term memory as a simple scalar and embedding this scalar into the state definition.
Next, we denote the maximum possible distance from an arbitrary solution to the nearest
optimal solution by Dmax. Finally, let the conditional probability P (Sj,x′|Si,x) denote the
probability of simultaneously altering the search gradient from x to x′ and moving from
a solution distance i from the nearest optimal solution to a solution distance j from the
nearest optimal solution. The majority of these probabilities equal 0, specifically for any
pair of states Sj,x′ and Si,x where |i − j| > 1 or when simultaneous changes in both the
gradient and the distance to the nearest optimal solution are logically impossible, e.g., from
state Si,closer to state Si+1,closer. For each i, 1 ≤ i ≤ Dmax, there exist at most the following
nine non-zero transition probabilities:

• P (Si−1,closer|Si,closer), P (Si,equal|Si,closer), and P (Si+1,farther|Si,closer)

• P (Si−1,closer|Si,equal), P (Si,equal|Si,equal), and P (Si+1,farther|Si,equal)

• P (Si−1,closer|Si,farther), P (Si,equal|Si,farther), and P (Si+1,farther|Si,farther)

The probabilities P (Sj,x′|Si,x) are also subject to the following total-probability constraints:

• P (Si−1,closer|Si,closer) + P (Si,equal|Si,closer) + P (Si+1,farther|Si,closer) = 1

• P (Si−1,closer|Si,equal) + P (Si,equal|Si,equal) + P (Si+1,farther|Si,equal) = 1

• P (Si−1,closer|Si,farther) + P (Si,equal|Si,farther) + P (Si+1,farther|Si,farther) = 1
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To complete the Markov model of TSN1 , we create a reflecting barrier at i = Dmax and
an absorbing state at i = 0 by respectively imposing the constraints P (S0,closer|S0,closer) = 1
and P (SDmax−1,closer|SDmax,farther) +P (SDmax,equal|SDmax,farther) = 1. These constraints yield
three isolated states: S0,equal, S0,farther, and SDmax,closer. Consequently the Markov model
consists of exactly 3 · Dmax states.

We conclude by noting that an aggregated random walk model of TSN1 (or any other
local search algorithm) will not capture the full detail of the underlying search process.
In particular, the partition induced by aggregating JSP solutions based on their distance
to the nearest optimal solution is not lumpable (Kemeny & Snell, 1960); distinct solutions
at identical distances to the nearest optimal solution have different transition probabilities
for moving closer to and farther from the nearest optimal solution, due to both (1) unique
numbers and distributions of infeasible neighbors and (2) unique distributions of neighbor
makespans. Thus, the question we are posing is whether there exist sufficient regularities
in the transition probabilities for solutions within a given partition such that it is possible
to closely approximate the behavior of the full Markov chain using a reduced-order chain.

7.2 Parameter Estimation

We estimate the Markov model parameters Dmax and the set of P (Sj,x′ |Si,x) by sampling a
subset of solutions visited by TSN1 . For a given problem instance, we obtain at least Smin

and at most Smax distinct solutions at each distance i from the nearest optimal solution,
where 2 ≤ i ≤ rint(dlopt-opt).

7 For the 6 × 4 and 6 × 6 problem sets, we let Smin = 50
and Smax = 250; for the 10 × 10 set, we let Smin = 50 and Smax = 500. These values of
Smin and Smax are large enough to ensure that artificially isolated states are not generated
due to an insufficient number of samples. Individual trials of TSN1 are executed until a
globally optimal solution is located, at which point a new trial is initiated. The process
repeats until at least Smin samples are obtained for each distance i from the nearest optimal
solution, 2 ≤ i ≤ rint(dlopt-opt), at which point the current algorithmic trial is immediately
terminated.

The upper bound Smax is imposed to mitigate the impact of solutions that are sta-
tistically unlikely to be visited by TSN1 during any individual trial, but are nonetheless
encountered with non-negligible probability when executing the large number of trials that
are required to achieve the sampling termination criterion. Informally, Smax allows us to
ensure that only truly representative solutions are included in the sample set. Candidate
solutions are only considered for inclusion every 100 iterations for the smaller 6×4 and 6×6
problem sets, and every 200 iterations for the larger 10 × 10 problem set. Such periodic
sampling ensures that the collected samples are uncorrelated; the specific sampling intervals
are based on estimates of the landscape correlation length (Mattfeld et al., 1999), i.e., the
expected number of iterations of a random walk after which solution fitness is uncorrelated.
Candidate solutions are accepted in order of appearance, i.e., the first Smin distinct solutions
encountered at a given distance i are always retained, and are discarded once the number
of prior samples at distance i exceeds Smax. For each sampled solution at distance i from
the nearest optimal solution and search gradient x, we track the distance j and gradient x ′

for the solution in the subsequent iteration.

7. The function rint(x) is defined as rint(x) = bx + 0.5c, which rounds to the nearest integer.
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Let #(Si,x) and #(Sj,x′|Si,x) respectively denote the total number of observed samples
in state Si,x and the total number of observed transitions from a state Si,x to a state
Sj,x′. Estimates of the transition probabilities are computed using the obvious formulas,
e.g., P (Si−1,closer|Si,closer) = #(Si−1,closer|Si,closer)/#(Si,closer). We frequently observe at
least Smin samples for distances i > rint(dlopt-opt). To estimate Dmax, we first determine the
minimal X such that the number of samples at distance X is less than Smin, i.e., the smallest
distance at which samples are not consistently observed. We then define Dmax = X − 1;
omission of states Si,x with i > X has negligible impact on model accuracy. Finally, we
observe that our estimates of both the P (Sj,x′|Si,x) and Dmax are largely insensitive to both
the initial solution and the sequence of solutions visited during the various trials, i.e., the
statistics appear to be isotropic.

The aforementioned process is online in that the computed parameter estimates are
based on solutions actually visited by TSN1 . Ideally, parameter estimates could be derived
independently of the algorithm under consideration, for example via an analysis of random
local optima. However, two factors conspire to prevent such an approach in the JSP. First,
as shown in Section 6, random local optima are typically not representative of solutions
visited by TSN1 during search, and we currently do not fully understand the root cause
of this phenomenon (although preliminary evidence indicates it is due in large part to the
distribution of infeasible solutions within the feasible space). Second, it is unclear how
to realistically sample the contents of short-term memory. Consequently, we are currently
forced to use TSN1 to generate, via a Monte Carlo-like process, a representative set of
samples. Further, we note that the often deterministic behavior of TSN1 (discounting ties
in the case of multiple equally good non-tabu moves and randomization of the tabu tenure)
generally prevents direct characterization of the distribution of transition probabilities for
any single sample, as is possible for local search algorithms with a stronger stochastic
component, e.g., iterated local search or Metropolis sampling (Watson, 2003).

In Figure 5, we show the estimated probabilities of moving closer to (left figure) or
farther from (right figure) the nearest optimal solution for a typical 10 × 10 random JSP;
the probability of maintaining an equal search gradient is negligible (p < 0.1), independent of
the current distance to the nearest optimal solution. We observe qualitatively similar results
for all of our 6× 4, 6× 6, and 10× 10 random JSPs, although we note that results for most
instances generally possess more noise (i.e., small-scale irregularities) than those observed in
Figure 5. The results indicate that the probability of continuing to move closer to (farther
from) the nearest optimal solution is typically proportional (inversely proportional) to the
current distance from the nearest optimum. An exception occurs when i ≤ 10 and the
gradient is closer, where the probability of continuing to move closer to an optimal solution
actually rises as i → 0. We currently have no explanation for this phenomenon, although it
appears to be due in part to the steepest-descent bias exhibited by TSN1 .

The probabilities of moving closer to/farther from the nearest optimal solution are,
in general, roughly symmetric around Dmax/2, such that search in TSN1 is biased toward
solutions that are an average distance from the nearest optimal solution. This characteristic
provides an explanation for the Gaussian-like distributions of dopt observed for solutions
visited during search, e.g., as shown in Figure 2. The impact of short-term memory is
also evident, as the probability of maintaining the current search gradient is high and
consistently exceeds 0.5 in all of the problem instances we examined, with the exception
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Figure 5: The transition probabilities for moving closer to (left figure) or farther from (right
figure) the nearest optimal solution under TSN1 for a typical 10×10 random JSP.

of occasional brief drops to no lower than 0.4 at extremal distances i, i.e., i ≈ 0 or i ≈
Dmax. The probability of inverting the current gradient is also a function of the distance
to the nearest optimal solution and the degree of change. For example, the probability
of switching gradients from equal to closer is higher than the probability of switching from
farther to closer. Consistent with the results presented above in Section 6, (1) the distance i
at which P (Si−1,closer|Si,closer) = P (Si+1,farther|Si,farther) is approximately equal to dtabu-opt

and (2) dlopt-opt generally falls anywhere in the range [Dmax/2, Dmax]. Finally, we note the
resemblance between the transition probabilities in our Markov model and those in the
well-known Ehrenfest model found in the literature on probability theory (Feller, 1968, p.
377); in both models, the random walk dynamics can be viewed as a simple diffusion process
with a central restoring force.

7.3 Validation

To validate the random walk model, we compare the actual mean search cost c observed
under TSN1 with the corresponding value predicted by the model. We then construct
a log10-log10 linear regression model of the predicted versus actual c and quantify model
accuracy as the resulting r2. Because it is based on the random walk model of TSN1 , we
refer to the resulting linear regression model as a dynamic cost model. Due to the close
relationship between the random walk and dynamic cost models, we use the two terms
interchangeably when identification of a more specific context is unnecessary.

To compute the predicted c for a given problem instance, we repeatedly simulate the
corresponding random walk model defined by the parameters Dmax, the set of states Si,x, and
the estimated transition probabilities P (Sj,x′|Si,x). Each simulation trial is initiated from a
state Sm,n, where m = dopt(s) for a trial-specific random local optimum s and n equals closer

or farther with equal probability; recall that the probability of maintaining an equal search
gradient is negligible. We compute m exactly (as opposed to simply using rint(d lopt-opt))
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in order to control for possible effects of the distribution of dopt for random local optima,
which tend to be more irregular (i.e., non-Gaussian) for small problem instances; letting
m = rint(dlopt-opt) results in a slight (< 5%) decrease in model accuracy. We then define
the predicted search cost c as the mean number of simulated iterations required to achieve
the absorbing state S0,closer; statistics are taken over 10,000 independent trials.

We first consider results obtained for our 6×4 and 6×6 random JSPs. Scatter-plots of the
predicted versus actual c for these two problem sets are shown in the top portion of Figure 6.
The r2 value for both of the corresponding log10-log10 regression models is a remarkable
0.96. For all but 21 and 11 of the respective 1,000 6× 4 and 6× 6 instances, the actual c is
within a factor of 2 of the predicted c. For the remaining instances, the actual c deviates
from the predicted value by a maximum factor of 4.5 and 3.5, respectively. In contrast to
the dlopt-opt and dtabu-opt cost models, there is no evidence of an inverse correlation between
problem difficulty and model accuracy; if anything, the model is least accurate for the easiest
problem instances, as shown in the upper left side of Figure 6. A detailed examination of
the high-residual instances indicates that the source of the prediction error is generally
the fact that TSN1 visits specific subsets of solutions that are close to optimal solutions
with a disproportionately high frequency, such that the primary assumption underlying
our Markov model, i.e, lumpability, is grossly violated. As shown below, we have not
yet observed this behavior in sets of larger random JSPs, raising the possibility that the
phenomena is isolated.

Next, we assess the scalability of the dynamic cost model by considering the 42 of our
10 × 10 random JSPs with ≤ 100,000 optimal solutions. A scatter-plot of the predicted
versus actual c for these instances is shown in the lower portion of Figure 6; the r2 value
of the corresponding log10-log10 regression model is 0.97. For reference, we include results
(labeled) for those 10 × 10 random JSPs from the OR Library with ≤ 100,000 optimal
solutions. The actual c is always within a factor of 2.1 of the predicted c, and there is no
evidence of any correlation between accuracy and problem difficulty. More importantly, we
observe no degradation in accuracy relative to the smaller problem sets.

We have also explored a number of secondary criteria for validation of the dynamic
cost model. In particular, we observe minimal differences between the predicted and actual
statistical distributions of both (1) the distances to the nearest optimal solution and (2) the
trend lengths, i.e., the number of iterations that consistent search gradients are maintained.
Additionally, we consider differences in the distribution of predicted versus actual search
costs below in Section 9. Finally, we note that the dynamic cost model is equally accurate
(r2 ≥ 0.96) in accounting for the cost of locating sub-optimal solutions to arbitrary 6 × 4
and 6× 6 random JSPs, as well as specially constructed sets of very difficult 6× 4 and 6× 6
random JSPs. Both problem types are fully detailed in (Watson et al., 2003).

7.4 Discussion

The results presented in this section provide strong, direct evidence for our hypothesis that
search under TSN1 acts as a variant of a straightforward one-dimensional random walk over
the Slopt+ sub-space. However, the transition probabilities between states of the random
walk are non-uniform, reflecting the presence of two specific biases in the search dynamics.
First, search is biased toward solutions that are approximately equi-distant from the nearest
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Figure 6: Scatter-plots of the predicted versus actual search cost c for 6 × 4 (upper left
figure), 6 × 6 (upper right figure), and 10 × 10 (lower figure) random JSPs; the
least-squares fit lines are super-imposed.

optimal solution and solutions that are maximally distant from the nearest optimal solution.
Consequently, in terms of random walk theory, the run-time dynamics can be viewed as a
diffusion process with a central restoring force toward solutions that are an average distance
from the nearest optimal solution. Second, TSN1 ’s short-term memory causes search to
consistently progress either toward or away from the nearest optimal solution for extended
time periods; such strong trending behavior has not been observed in random walks or in
other memoryless local search algorithms for the JSP (Watson, 2003). Despite its central
role in tabu search, our analysis indicates that, surprisingly, short-term memory is not
always beneficial. If search is progressing toward an optimal solution, then short-term
memory will increase the probability that search will proceed even closer. In contrast,
when search is moving away from an optimal solution, short-term memory inflates the
probability that search will continue to be led astray. Finally, we note that like d lopt-opt and
dtabu-opt, Dmax is a concrete measure of |Slopt+|

′; all three measures directly quantify, with

21



Watson, Whitley, & Howe

varying degrees of accuracy, the width of the search space explored by TSN1 . We further
discuss the linkage between these measures below in Section 8.

7.5 Related Research

Hoos (2002) uses Markov models similar to those presented here to analyze the source of
specific irregularities observed in the run-length distributions (see Section 9) of some lo-
cal search algorithms for SAT. Because the particular algorithms investigated by Hoos are
memoryless, states in the corresponding Markov chain model simply represent the set of
solutions distance k from the nearest optimal (or more appropriately in the case of SAT,
satisfying) solution. The transition probabilities for moving either closer to or farther from
an optimal solution are fixed to the respective constant values p− and p+ = 1−p−, indepen-
dent of k. By varying the values of p−, Hoos demonstrates that the resulting Markov chains
exhibit the same types of run-length distributions as well-known local search algorithms for
SAT, including GWSAT and WalkSAT. Extensions of this model are additionally used to
analyze stagnation behavior that is occasionally exhibited by these same algorithms.

Our research differs from that of Hoos in several respects, the most obvious of which
is the explicit modeling of TSN1 ’s short-term memory mechanism. More importantly, we
derive estimates of both the transition probabilities and the number of states directly from
instance-specific data. We then test the ability of the resulting model to capture the behav-
ior of TSN1 on the specific problem instance. In contrast, Hoos posits a particular structure
to the transition probabilities a priori. Then, by varying parameter values such as p− and
the number of model states, Hoos demonstrates that the resulting models capture the range
of run-length distributions exhibited by local search algorithms for SAT; accuracy relative
to individual instances is not assessed.

Additionally, we found no evidence that the transition probabilities in the JSP are inde-
pendent of the current distance to the nearest optimal solution. Given that (1) the solution
representation underlying TSN1 and many other local search algorithms for the JSP is a
Binary hypercube and (2) neighbors under the N1 operator are by definition Hamming
distance 1 from the current solution, constant transition probabilities would be entirely
unexpected from a theoretical standpoint (Watson, 2003). Finally, we have developed anal-
ogous dynamic cost models for a number of memoryless local search algorithms for the JSP
based on the N1 move operator, including a pure random walk, iterated local search, and
Metropolis sampling (Watson, 2003).

Finally, there are similarities between our notion of effective search space size (|S lopt+|
′)

and the concept of a virtual search space size. Hoos (1998) observes that local search algo-
rithms exhibiting exponentially distributed search costs (which includes TSN1 , as discussed
in Section 9) behave in a manner identical to blind guessing in a sub-space of solutions con-
taining both globally optimal and sub-optimal solutions. Under this interpretation, more
effective local search algorithms are able to restrict the total number of sub-optimal solu-
tions under consideration, i.e., they operate in a smaller virtual search space. Our notion of
effective search space size captures a similar intuition, but is in contrast grounded directly
in terms of search space analysis; in effect, we provide an answer to a question posed by
Hoos, who indicates “ideally, we would like to be able to identify structural features of the
original search space which can be shown to be tightly correlated with virtual search space
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size” (p. 133, 1998). Further, we emphasize the role of the number and distribution of
globally optimal optimal solutions within the sub-space of solutions under consideration,
and directly relate run-time dynamics (as opposed to search cost distributions) to effective
search space size (i.e., through Dmax).

8. The Link Between Search Space Structure and Run-Time Dynamics

In transitioning from static to dynamic cost models, our focus shifted from algorithm-
independent features of the fitness landscape to explicit models of algorithm run-time be-
havior. By leveraging increasingly detailed information, we were able to obtain monotonic
improvements in cost model accuracy. Discounting the difficulties associated with iden-
tifying the appropriate types of information, a positive correlation between information
quantity and cost model accuracy is conceptually unsurprising. Static cost models are
algorithm-independent – a useful feature in certain contexts – and we anticipate a weak
upper bound on the absolute accuracy of these models. Our quasi-dynamic dtabu-opt cost
model is based on the same summary statistic as the static dlopt-opt cost model; only the
sample sets involved in computation of the statistic are different. In either case, the re-
sulting cost models are surprisingly accurate, especially given the simplicity of the statistic.
In contrast, a comparatively overwhelming increase in the amount of information appears
to be required (as embodied in the dynamic cost model) to achieve further increases in
accuracy.

Perhaps more interesting than the correlation between information quantity and cost
model accuracy is the nature of the relationship between the information underlying cost
models at successive “levels”, i.e., between static and quasi-dynamic models, or quasi-
dynamic and dynamic models. Specifically, we argue that the parameters associated with a
particular cost model estimate key parameters of the cost model at the subsequent higher
level, exposing an unexpectedly strong and simple link between fitness landscape structure
in the JSP and the run-time dynamics of TSN1 .

Recall from Section 7.2 that the estimated transition probabilities in the dynamic cost
model are qualitatively identical across the range of problem instances and that most major
differences are due to variability in Dmax, the maximal observed distance to the nearest
optimal solution. Further, we observe that the “closer” and “farther” transition probabili-
ties are roughly symmetric around Dmax/2. Consequently, search under TSN1 is necessarily
biased toward solutions that are approximately distance Dmax/2 from the nearest optimal
solution. More precisely, we denote the mean predicted distance to the nearest optimal so-
lution by ddynamic-opt; simulation confirms that ddynamic-opt ≈ Dmax/2, where any deviations
are due primarily to the asymmetric rise in transition probability as i → 0 for gradients
equal to closer. But dtabu-opt also measures the mean distance between solutions visited dur-
ing search and the nearest optimal solution, i.e., dtabu-opt ≈ ddynamic-opt. Thus, we believe
the success of the dtabu-opt model is due to the fact that (1) the transition probabilities in
the dynamic cost model are qualitatively identical across different problem instances and
(2) dtabu-opt indirectly approximates the key parameter Dmax of the dynamic cost model,
via the relation dtabu-opt ≈ ddynamic-opt ≈ Dmax/2. Discrepancies in the accuracy of the
dynamic and quasi-dynamic cost models are expected, as no single measure is likely to
capture the impact of subtle irregularities in the transition probabilities. The power of the
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dlopt-opt model is in turn due to the fact that dlopt-opt ≈ dtabu-opt – but only for small problem
instances. For larger problem instances, dlopt-opt consistently over-estimates dtabu-opt, and
consequently Dmax, by failing to discount those regions of the search space that TSN1 is
unlikely to explore. To conclude, the various cost models are related by the expression
dlopt-opt ≈ dtabu-opt ≈ ddynamic-opt ≈ Dmax/2. The linkage between the models is due to the
fact that these models all attempt, with varying degrees of accuracy, to quantify the effective
size |Slopt+|

′ of the sub-space of solutions likely to be visited by TSN1 during search.

9. The Dynamic Cost Model and Run-Length Distributions

The cost models developed in Sections 5–7 account for variability in central tendency mea-
sures of problem difficulty, i.e., c and cQ2. In reality, search cost is a random variable C.
Consequently, a cost model should ideally both qualitatively and quantitatively capture the
full distribution of C. Because they are based on simple summary statistics, it is difficult
to imagine how static and quasi-dynamic cost models might be extended to account for C.
In contrast, a predicted C is easily obtained from the dynamic cost model; as discussed in
Section 7.3, a predicted C is generated in order to compute c and is subsequently discarded.
We now analyze the nature of the full C predicted by the dynamic cost model and determine
whether it accurately represents the actual distribution of search costs under TSN1 .

We follow Hoos (1998) in referring to the distribution C for a given problem instance
as the run-length distribution (RLD). In what follows, we consider two specific questions
relating to the RLDs of random JSPs under TSN1 : (1) From what family of distributions
are the RLDs drawn? and (2) Are the predicted and actual RLDs identically distributed?
Both questions can be answered using standard statistical goodness-of-fit tests. Although
the RLDs for TSN1 are discrete, we approximate the actual distributions using continuous
random variables; the approximation is tight due to the wide range of search costs observed
across individual trials, allowing us to avoid issues related to the specification of the bin size
in the standard χ2 goodness-of-fit test for discrete random variables (e.g., such as those per-
formed by Hoos). Instead, we use the two-sample Kolmogorov-Smirnov (KS) goodness-of-fit
test, which assumes the existence of samples (in the form of cumulative density functions
or CDFs) for distinct continuous random variables. The null hypothesis for the KS test
states that the distributions underlying both samples are identically distributed. The KS
test statistic quantifies the maximal distance between the two CDFs and the null hypothesis
is rejected if the “distance” between them is sufficiently large (Scheaffer & McClave, 1990).

We first consider the family of distributions from which the individual RLDs are drawn.
Taillard (1994, p. 116) indicates that the number of iterations required to locate optimal
solutions using his algorithm is approximately exponentially distributed. However, he only
reported qualitative results for a single 10 × 10 problem instance. Using our set of 10 × 10
random JSPs, we now perform a more comprehensive analysis. For each instance, we com-
pute the two-sample KS test statistic for the null hypothesis that the RLD is exponentially
distributed. The first sample consists of the actual search costs c observed over 1,000 in-
dependent trials. The second sample consists of 1,000,000 random samples drawn from
an exponential distribution with a mean c computed from the first sample; direct sam-
pling from the theoretical CDF is required by the particular statistical software package
we employed in our analysis. We show the distribution of the p-values associated with the
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Figure 7: Left Figure: Distribution of the p-values for rejecting the null hypothesis that
the RLDs of 10 × 10 random JSPs are exponentially distributed under TSN1 .
Right Figure: The actual and exponential RLDs for the 10×10 instance with the
smallest p-value.

resulting KS test statistics in the left side of Figure 7. At p ≤ 0.01, we reject the null
hypothesis for 11 of the 100 instances, i.e., search cost under TSN1 is not exponentially
distributed in roughly 10% of the instances. In the right side of Figure 7, we show CDFs
of both the actual RLD and the corresponding exponential RLD for the instance with the
smallest p-value, or, equivalently, the largest deviation between the two CDFs. For this
instance, and all other instances with p ≤ 0.01, the two distributions differ primarily in
their left tails. In particular, we observe far fewer low-cost runs than found in a purely
exponential distribution.

Our results reinforce Taillard’s observation that the RLDs under TSN1 are approx-
imately exponentially distributed. Exponential RLDs also arise in the context of local
search algorithms for other NP -hard problems. For example, Hoos (1998, p. 118) reports
qualitatively similar results for a range of local search algorithms (e.g., Walk-SAT) for MAX-
SAT. Hoos additionally demonstrated that the deviation from the exponential “ideal” is a
function of problem difficulty: RLDs of harder (easier) problem instances are more (less)
accurately modeled by an exponential distribution. A similar relationship holds for the
RLDs under TSN1 . In Figure 8, we show a scatter-plot of the mean search cost c versus the
value of the KS test statistic for 10× 10 random JSPs. The data indicate that the value of
the KS test statistic is inversely proportional to instance difficulty. More specifically, the
RLDs under TSN1 are approximately exponential for moderate-to-difficult instances, while
the exponential approximation degrades for easier instances, e.g., as shown in the right side
of Figure 7. Given significant differences between MAX-SAT and the JSP, our result raises
the possibility of a more universal phenomenon. Finally, we note that Hoos also demon-
strated that the RLDs of easy instances are well-approximated by a Weibull distribution,
a generalization of the exponential distribution. Although not reported here, this finding
also translates to the RLDs of those instances shown in Figure 8 with p ≤ 0.05.
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thresholds at p ≤ 0.01 and p ≤ 0.05.

Next, we analyze whether the RLDs predicted by the dynamic cost model can account
for the actual RLDs observed for TSN1 . For each of our 10× 10 random JSPs, we compute
the two-sample KS test statistic for the null hypothesis that the predicted and actual RLDs
originate from the same underlying distribution. The first sample consists of the actual c
observed over 1,000 independent trials of TSN1 . The second sample consists of the 10,000
individual costs c used to estimate the predicted c (see Section 7.3). The discrepancy in
the two sample sizes stems from the cost associated with obtaining individual samples. We
only report results for the 42 instances for which estimation of the dynamic cost model
parameters is computationally tractable. For all but 6 of the 42 instances (≤ 15%), we
reject the null hypothesis that the two distributions are identical at p ≤ 0.01; we found no
evidence of any correlation between p and problem difficulty. In other words, despite the
success of the dynamic cost model in accounting for c, it generally fails to account for the
full RLD. Yet, despite statistically significant differences, the predicted and actual RLDs
are generally qualitatively identical. For example, consider the predicted and actual RLDs
for the two instances yielding the smallest and largest p-values, as shown in Figure 9. In
the best case, the two distributions are effectively identical. In the worst case, the two
distributions appear to be qualitatively identical, such that the actual RLD can be closely
approximated by shifting the predicted RLD along the x-axis.

In further support of this observation, we more carefully consider the 36 instances in
which the differences between the actual and predicted RLDs are statistically significant at
p ≤ 0.01. For each instance, we compute the KS test statistic for the difference between the
predicted RLD and an exponential distribution with mean equal to the predicted c. For
all difficult instances, specifically those with a predicted c ≥ 10, 000, we fail to reject the
null hypothesis that the underlying distributions are identical at p ≤ 0.01. Consequently, if
the dynamic cost model were able to accurately predict c, the predicted and actual RLDs
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Figure 9: CDFs of the predicted and actual RLDs for two 10 × 10 random JSPs. The
p-values for the KS test statistic are respectively 0.73 and 3.4 × 10−78.

would be statistically indistinguishable. For the remaining easy and medium instances,
we do observe statistically significant differences at p ≤ 0.01 between the predicted and
corresponding exponential RLDs. However, any differences are isolated to the left tails of
both distributions, such that the predicted RLDs under-cut the corresponding exponential
RLDs, e.g., as shown in the right side of Figure 7. In other words, the RLDs predicted
by the dynamic cost model capture those deviations from the exponential form that are
observed in the RLDs of TSN1 on easy and medium difficulty instances.

Given (1) the well-known difficulty of accurately estimating the mean of an exponential
or exponential-like distribution and (2) the fact that any “lumped” model of TSN1 will
necessarily fail to capture the full detail of the true underlying Markov chain, our results
provide strong evidence in support of the hypothesis that any observed differences between
the predicted and actual RLDs are not indicative of any major structural flaw in the dynamic
cost model.

10. On the Difficulty of Structured JSPs

For fixed n and m, the mean difficulty of JSP instances is known to increase as the number of
workflow partitions wf is varied from 1 (corresponding to random JSPs) to m (corresponding
to flowshop JSPs), i.e., as more structure is introduced. For example, the mean cQ2 under
TSN1 observed for our 6 × 6 random, workflow, and flowshop JSPs are 280, 3,137, and
12,127, respectively. These differences represent an order-of-magnitude increase in average
difficulty as wf is varied from 1 to m/2 and again from m/2 to m. Similar differences
are observed for 10 × 10 random, workflow, and flowshop JSPs, where the mean cQ2 are
respectively 315,413, 4.35 × 107, and 2.62 × 108. The often extreme difficulty of structured
JSPs is further illustrated by the fact that the most difficult 10× 10 flowshop JSP required
an average of 900 million iterations of TSN1 to locate an optimal solution.
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Cost Model

Problem Size Structure dlopt-opt dtabu-opt

6 × 4 Random 0.80 0.84
Workflow 0.62 0.76
Flowshop 0.70 0.72

6 × 6 Random 0.64 0.78
Workflow 0.30 0.55
Flowshop 0.41 0.55

Table 2: The r2 values of the dlopt-opt and dtabu-opt cost models of TSN1 obtained for 6 × 4
and 6 × 6 random, workflow, and flowshop JSPs.

We previously reported that the accuracy of the dlopt-opt cost model fails to transfer
from random JSPs to workflow JSPs (Watson et al., 2003); additional experiments yield
similar results for flowshop JSPs. Table 2 shows the r2 values of the dlopt-opt and dtabu-opt

cost models for 6 × 4 and 6 × 6 random, workflow, and flowshop JSPs. The results in-
dicate that the dlopt-opt model is more accurate on random JSPs than on either workflow
and flowshop JSPs, although accuracy improves when transitioning from workflow to flow-
shop JSPs. The dtabu-opt model is more accurate than the dlopt-opt model on both types of
structured JSP. However, despite the absolute improvements relative to the d lopt-opt model,
accuracy of the dtabu-opt model decreases with increases in wf. Overall, the dtabu-opt model
accounts for slightly over half of the variability in problem difficulty observed in the more
difficult structured 6 × 6 JSPs. The significant difference in accuracy (≈ 30%) relative to
random JSPs raises the possibility that the dynamic cost model may be unable to correct
for the deficiencies of the dtabu-opt model. In particular, factors other than |Slopt+|

′ may be
contributing to the difficulty of structured JSPs, or it may not be possible to model the
behavior of TSN1 on structured instances as a simple random walk.

Consider the transition probabilities under the dynamic cost model for 6 × 4 and 6 × 6
workflow and flowshop JSPs, obtained using the sampling methodology described in Sec-
tion 7.2. Figure 10 shows the probabilities of TSN1 continuing to transition closer to the
nearest optimal solution for two 6 × 6 flowshop instances. For the instance corresponding
to the left-hand figure, the transition probabilities are roughly proportional to the current
distance from the nearest optimal solution, which is consistent with the results observed
for random JSPs, e.g., as shown earlier in Figure 5. In contrast, for the instance corre-
sponding to the right-hand figure, the probability of TSN1 continuing to move closer to the
nearest optimal solution is effectively constant at ≈ 0.6. These examples illustrate a key
point regarding the behavior of TSN1 on structured JSPs: the transition probabilities are
significantly more heterogeneous than those observed for random JSPs, often deviating sig-
nificantly from the “prototypical” (i.e., symmetric around Dmax/2) form in both qualitative
and quantitative aspects. Given such large deviations, it is unsurprising that cost models
based on simple summary statistics, specifically dtabu-opt, fail to account for a substantial
proportion of the variability in the difficulty of structured JSPs.
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Figure 10: The transition probabilities for moving closer to the nearest optimal solution
under TSN1 for distinct 6 × 6 flowshop JSPs.

Despite differences in the transition probabilities relative to those observed for random
JSPs, we observe no impact on the overall accuracy of the dynamic cost model. For 6 × 4
and 6 × 6 workflow JSPs, the r2 values corresponding to a log10 − log10 regression of the
predicted versus actual c are respectively 0.97 and 0.95. The analogous r2 for both 6 × 4
and 6 × 6 flowshop JSPs is 0.96. For all but a few exceptional instances, the actual c is
always within a factor of 3 of the predicted c; in no case does the difference exceed a factor
of 4. Similar results are obtained on a small set of randomly generated 10 × 10 workflow
and flowshop JSPs for which transition probability estimation is computationally feasible.

The dynamic cost model accurately captures the run-time dynamics of TSN1 on both
random and structured JSPs, although the transition probabilities are qualitatively different
in the two types of problem. Heterogeneity in the transition probabilities of structured JSPs
additionally indicates that variability in the difficulty of these instances is unlikely to be
captured by simple summary statistics, yielding reductions in the accuracy of our static and
quasi-dynamic cost models. Finally, we observe that it is still possible that the accuracy of
the dynamic cost model may degrade significantly under fundamentally different types of
structure than those considered here, e.g., with strong correlation between subsets of the
operation durations τij.

Mattfeld et al. (1999) indicate that differences in the difficulty of random and workflow
JSPs are due to differences in the size of the search spaces, as measured by the mean
distance between random local optima. The observed mean maximal distance Dmax to
a nearest optimal solution increases when moving from random JSPs to workflow JSPs,
and again from workflow JSPs to flowshop JSPs; results for 6 × 4 and 6 × 6 problem sets
are shown in Table 3. Consequently, our results serve to clarify Mattfeld et al.’s original
assertion: given that Dmax is a measure of |Slopt+|

′, differences in the difficulty of random
and structured JSPs are simply due to differences in the effective size of the search space.
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Structure Type

Problem Size Random Workflow Flowshop

6 × 4 21.46 37.01 44.80

6 × 6 26.67 47.80 68.86

Table 3: The mean maximal distance to the nearest optimal solution (Dmax) observed for
6 × 4 and 6 × 6 random, workflow, and flowshop JSPs.

11. Moving Toward Cost Models of State-of-the-Art Algorithms

As discussed in Section 3, TSN1 is a relatively straightforward implementation of tabu search
for the JSP. In particular, it lacks features such as advanced move operators and long-term
memory mechanisms that have been demonstrated to improve the performance of tabu
search algorithms for the JSP. Given an accurate cost model of TSN1 , the next logical step
is to systematically assess the impact of these algorithmic features on model structure and
accuracy. Ultimately, the goal is to incrementally move both the target algorithm and the
associated cost model toward the state-of-the-art, e.g., as currently represented by Nowicki
and Smutnicki’s (2005) i-TSAB algorithm. We now take an initial step toward this goal
by demonstrating that a key performance-enhancing component – the powerful N5 move
operator – fails to impact either the structure or accuracy of the dynamic cost model.

Recall from Section 3 that the neighborhood of a solution s under the N1 move operator
consists of all solutions obtained by inverting the order of a pair of adjacent operations
on the same critical block. Let s′ ∈ N1 (s) denote the solution obtained by inverting
the order of two adjacent critical operations oij and okl in s. If both oij and okl are
contained entirely within a critical block, i.e., neither operation appears first or last in
the block, then Cmax(s

′) ≥ Cmax(s) (Mattfeld, 1996). In other words, many moves under
N1 provably cannot yield immediate improvements in the makespan of the current solution
and therefore should not be considered during search. Building on this observation, Nowicki
and Smutnicki (1996) introduce a highly restricted variant of the N1 move operator, with
the goal of accelerating local search by reducing the total cost of neighborhood evaluation.
This operator, which we denote N5 , contributes significantly to the performance of both the
well-known TSAB algorithm (Nowicki & Smutnicki, 1996) and the current state-of-the-art
algorithm for the JSP, i-TSAB (Nowicki & Smutnicki, 2005). However, the power of the
N5 operator comes with a price: the induced search space is disconnected, such that it
is not always possible to move from an arbitrary solution to a globally optimal solution.
Consequently, no local search algorithm based strictly on N5 can be PAC in the theoretical
sense. Further, as discussed below, empirical PAC behavior for basic tabu search algorithms
based on the N5 operator is not possible for random JSPs.

The lack of the PAC property significantly complicates the development of cost models,
as it is unclear how to quantify search cost or, equivalently, problem difficulty. This fact,
in large part, drove our decision to base our research on the TSN1 algorithm. Recently,
we demonstrated that for random JSPs the N5 operator can induce small “traps” or iso-
lated sub-components of the search space from which escape is impossible (Watson, 2003).
Fortunately, these traps are easily detected and can be escaped via a short random walk
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Figure 11: Left Figure: Scatter-plot of the actual search cost c under the TSN5 versus TSN1

algorithms; the line y = x is super-imposed. Right Figure: Scatter-plot of the
predicted versus actual search cost c for 10 × 10 random JSPs using TSN5 ; the
least-squares fit line is super-imposed.

under the more general (i.e., connected) N1 move operator. Given these observations, we
introduced a novel N5 -based tabu search algorithm for the JSP that is empirically PAC
on all of our 6 × 4, 6 × 6, and 10 × 10 sets of random JSPs. The algorithm, which we
denote TSN5 , is detailed in (Watson, 2003). However, with the exception of both the move
operator and the trap detection/escape mechanisms, TSN1 and TSN5 are identical. We
further observe that traps are infrequently encountered (typically at most once every 5K or
more iterations), and we use identical settings for all parameters found in both algorithms,
i.e., Lmin and Lmax. Consequently, we are now able to characterize the impact of the N5
move operator on the effectiveness of tabu search for the JSP under controlled experimental
conditions.

Consider the mean search cost c under both TSN1 and TSN5 on our 10 × 10 random
JSPs; the corresponding scatter-plot is shown in the left side of Figure 11. We observe un-
expectedly low correlation between problem difficulty under the two algorithms; differences
of a factor of 10 are common and reach nearly a factor of 100 in the worst case. Due to
the low frequency of occurrence, a minimal proportion of the observed differences can be
attributed to the trap detection and escape mechanisms. The implication is that the move
operator can dramatically alter the cost required by tabu search to locate optimal solutions
to random JSPs. In many cases, the effect is actually detrimental in that the mean number
of iterations required under TSN5 can be significantly larger than that required under TSN1 .
However, the number of neighbors under the N1 operator commonly exceeds that under
the N5 operator by a factor of 10 or more, especially on larger problem instances, masking
any detrimental effects in the vast majority of cases. As a result, TSN5 consistently locates
optimal solutions in lower overall run-times on average than TSN1 .

Large differences in the observed c under TSN1 and TSN5 are necessarily indicative of
differences in the underlying run-time dynamics. We now consider whether the differences
are truly qualitative or merely quantitative. In other words, is the random walk model
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proposed in Section 7 no longer applicable, or can the differences be explained in terms of
changes in model parameters such as Dmax and the transition probabilities P (Sj,x′|Si,x)?
To answer this question, we first compute estimates of the dynamic cost model parameters
using the sampling methodology described in Section 7.2, with one exception: due to their
relative rarity, we do not attempt to capture the random walk events associated with trap
escape. To ensure tractability, we consider only the 42 of our 10 × 10 random JSPs with ≤
100,000 optimal solutions.

The resulting transition probabilities are more irregular than those observed under TSN1

on the same problem instances, mirroring the results obtained for structured JSPs described
in Section 10. Additionally, we frequently observe large discrepancies in Dmax under TSN1

and TSN5 , which, in part, accounts for the observed discrepancies in c. Using the resulting
parameter estimates, we compute the predicted c and compare the results with the actual c
observed using TSN5 ; the corresponding scatter-plot is shown in the right side of Figure 11.
The r2 value of the corresponding log10-log10 regression model is 0.96, and in all cases the
actual c deviates from the predicted c by no more than a factor of 5. Overall, these results
demonstrate that the N5 move operator has negligible effect on the absolute accuracy of
the dynamic cost model; as in TSN1 , search in TSN5 simply acts as a biased random walk
over the Slopt+ sub-space. Consequently, the dynamic cost model is an appropriate basis
for a detailed analysis of i-TSAB or related algorithms, which differ from TSN5 primarily
in the use of long-term memory mechanisms such as reintensification and path relinking
(Nowicki & Smutnicki, 2005).

12. Exploring the Predictive Capability of the Dynamic Cost Model

Thus far, our primary goal has been to explain the source of the variability in the cost of
locating optimal solutions to random JSPs using TSN1 ; the dynamic cost model introduced
in Section 7 largely achieves this objective. Despite this success, however, we have only
illustrated the explanatory power of the model. Ideally, scientific models are predictive,
in that they lead to new conjectures concerning subject behavior and are consequently
falsifiable. We next use the dynamic cost model to propose and empirically confirm two novel
conjectures regarding the behavior of TSN1 on random JSPs. Our analysis demonstrates
that the utility of cost models can extend beyond after-the-fact explanations of algorithm
behavior.

12.1 The Variable Benefit of Alternative Initialization Methods

Empirical evidence suggests that high-quality initial solutions can improve the performance
of tabu search algorithms for the JSP, e.g., see (Jain, Rangaswamy, & Meeran, 2000). Yet,
both the exact conditions under which improvements can be achieved and the expected
degree of improvement are poorly understood. We now explore a particular aspect of this
broader issue by considering the question: What impact do different initialization methods
have on the cost required by TSN1 to locate optimal solutions to random JSPs? The
preceding analyses of TSN1 are based on the assumption that search is initiated from a
random local optimum. Here, we instead consider the behavior predicted by the dynamic
cost model when search is initiated from solutions other than random local optima.
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Let vi denote the predicted mean search cost required to locate an optimal solution
under the dynamic cost model when search is initiated from solutions that are distance i
from the nearest optimal solution. As in Section 7, we assume the initial gradient x equals
closer or farther with equal probability. Ignoring potential asymmetries in the distribution of
dopt(s) for random local optima s, observe that the predicted c is approximately equal to
vδ where δ = rint(dlopt-opt), i.e., TSN1 is initiated from a local optimum that is an average
distance dlopt-opt from the nearest optimal solution. We address the issue of the impact of
alternative initial solutions on the performance of TSN1 by analyzing the nature of vi for
i 6= δ. In Figure 12, we show plots of the predicted costs vi over a wide range of i for specific
6× 6 (left figure) and 10× 10 (right figure) random JSPs; results for i ≤ 2, where v i � 100,
are omitted for purposes of visualization. For the 6 × 6 instance, search cost rises rapidly
between i = 3 and i = 10 and continues to gradually increase as i → Dmax. In contrast,
search cost for the 10 × 10 instance rises rapidly between i = 2 and i ≈ 15 but is roughly
constant, modulo the sampling noise, once i > 15. Even when i = 3, the dynamic model
predicts that search cost is still significant: if the initial search gradient is not closer, search
is rapidly driven toward solutions that are distant from the nearest optimal solution and any
benefit of the favorable initial position is lost. We observe qualitatively identical behavior in
a large sample of our random JSPs, arriving at the following general observation: for easy
(hard) instances, the approach toward an asymptotic value of vi as i → Dmax is gradual
(rapid). Consequently, we hypothesize that a particular initialization method will at best
have a minimal impact on the performance of TSN1 unless the resulting solutions are very
close to the nearest optimal solution. Additionally, we observe that the dynamic cost model
predicts that the distance to the nearest optimal solution, and not solution fitness, dictates
the benefit of a given initialization method. The distinction is especially key in the JSP,
where fitness-distance correlation is known to be comparatively weak, e.g., in contrast to
the Traveling Salesman Problem (Mattfeld, 1996).

To test this hypothesis, we analyze the performance of TSN1 using a variety of heuristic
and random methods to generate initial solutions. Following Jain et al. (2000), we consider
the following set of high-quality priority dispatch rules (PDRs) used in conjunction with
Giffler and Thompson’s (1960) procedure for generating active solutions8:

• FCFS (First-Come, First-Serve),

• LRM (Longest ReMaining work),

• MWKR (Most WorK Remaining), and

• SPT (Shortest Processing Time).

Additionally, we consider both active and non-delay solutions (Giffler & Thompson, 1960)
generated using random PDRs, respectively denoted RNDactv and RNDndly. Finally, we
include Taillard’s (1994) lexicographic construction method, denoted LEX, and the insertion
procedure introduced by Werner and Winkler (1995), which we denote WW; the latter is
one of the best constructive heuristics available for the random JSP (Jain et al., 2000).
Random semi-active solutions serve as a baseline and are denoted RNDsemi. The solutions

8. Technically, there is a formal difference between a solution and a schedule in the JSP. However, because
we are assuming earliest start-time scheduling of all operations, we use the two terms interchangeably.
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Figure 12: Plots of the distance i between an initial solution and the nearest optimal solu-
tion and the predicted search cost vi for a 6× 6 (left figure) and a 10× 10 (right
figure) random JSP. The δ = rint(dlopt-opt) for these two instances are 29 and
65, respectively.

resulting from all methods are transformed into local optima by applying steepest-descent
under the N1 operator.

We again consider only the 42 10 × 10 random JSPs with ≤ 100,000 optimal solutions;
we selected the larger - as opposed to 6 × 4 or 6 × 6 - problem set due to the higher
degree of expected difficulty. For each initialization method, we compute d lopt-opt for each
problem instance using (with the exception of LEX, which is deterministic) 5,000 local
optima generated by applying steepest-descent search to the solutions resulting from the
given method. For RNDsemi, we obtain a mean dlopt-opt, averaged over all 42 instances, of
approximately 70.92. We show the mean dlopt-opt for each remaining initialization method in
Table 4; p-values for the statistical significance of the mean difference in d lopt-opt between the
various methods and RNDsemi, computed using a Wilcoxon non-parametric, paired-sample
signed rank test, are also provided. With the exception of SPT, we observe significant
differences in dlopt-opt between the baseline RNDsemi solutions and those resulting from other
initialization methods. Initially, these data suggest that it may be possible to improve
the performance of TSN1 using initialization methods with low dlopt-opt. However, the
lowest mean values of dlopt-opt, obtained using the LEX and WW methods, are still large
in absolute terms. Consequently, given a combination of our working hypothesis and the
average difficulty of 10 × 10 instances (e.g., see the right side of Figure 12), it seems likely
that even these solutions are still too far from the nearest optimal solution to impact overall
search cost.

For each problem instance, we next compute the cQ2 under each initialization method;
statistics are taken over 1,000 independent trials of TSN1 . The percent differences in cQ2

for each initialization method relative to that obtained under the RNDsemi baseline are
reported in Table 4. The worst-case deviation is less than 3% and the best improvement,
obtained under WW, is only 2.79%. Further, all observed discrepancies can be attributed
to sampling error in computation of cQ2 and no differences were statistically significant even
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Initialization Method
FCFS LRM MWKR SPT LEX RNDactv RNDndly WW

dlopt-opt 58.49 97.41 97.94 64.97 49.25 64.68 58.55 53.10

p for mean
difference in
dlopt-opt

0.001 0.001 0.001 0.126 0.001 0.001 0.001 0.001

relative to
RNDsemi

% mean
difference in
cQ2 relative
to RNDsemi

1.76 2.32 2.94 1.55 1.44 1.07 0.06 -2.79

p of mean
difference in
log10(cQ2)
relative to
RNDsemi

0.059 0.084 0.073 0.077 0.513 0.573 0.556 0.309

Table 4: The differences in both the mean distance to the nearest optimal solution (d lopt-opt)
and search cost (cQ2) for various initialization methods on 10 × 10 random JSPs;
differences are measured relative to random semi-active solutions (RNDsemi).

at p ≤ 0.05. The data support the hypothesis predicted by the dynamic cost model: for
difficult problems, available initialization methods for the JSP have no significant impact
on the performance of TSN1 . We conclude by observing that our results say nothing about
the cost required for TSN1 to locate optimal solutions to easy-to-moderate instances or
sub-optimal solutions on a range of problem instances. In particular, we observe that
alternative initialization methods may improve performance in these situations, due to the
gradual increase of vi associated with less difficult problem instances. Similarly, alternative
initialization methods may benefit tabu search algorithms that employ re-intensification,
such as those developed by Nowicki and Smutnicki. We have not investigated whether
similar results hold on structured JSPs, principally because of the increased difficulty in
computing both cQ2 and dlopt-opt for these instances.

12.2 The Specification of Tabu Tenure

Empirically, the performance of tabu search depends heavily upon the choice of tabu tenure.
Although “no single rule has been designed to yield an effective tenure for all classes of prob-
lem” (Glover & Laguna, 1997, p. 47), it is generally recognized that small tabu tenures lead
to search stagnation, i.e., the inability to escape local optima, while large tabu tenures can
yield significant deterioration in search effectiveness. Beyond these loose observations, prac-
titioners have little guidance in selecting tabu tenures, and there is no theoretical justifica-
tion for preferring any particular values within a range of apparently reasonable possibilities.
In TSN1 , a side-effect of short-term memory is to consistently bias search either toward or
away from the nearest optimal solution. Intuitively, we would expect the magnitude of this
bias to be proportional to the tabu tenure L; longer tenures should force search to make
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more rapid progress away from previously visited regions of the search space. Consider the
scenario in which TSN1 is steadily progressing away from the nearest optimal solution, such
that the current distance to the nearest optimal solution is given by X � dtabu-opt. For
any fixed L, TSN1 will eventually invert the gradient and move search toward the nearest
optimal solution. However, the larger the value of L, the more distant TSN1 is likely to
move from the nearest optimal solution before inversion occurs. In terms of our dynamic
model of TSN1 , this suggests that the maximal likely distance Dmax to the nearest optimal
solution achieved by TSN1 is proportional to L. We have shown that problem difficulty in
the JSP is largely a function of the effective search space size |Slopt+|

′, of which Dmax is one
measure. Consequently, we hypothesize that any increase in the tabu tenure translates into
growth in |Slopt+|

′ and by inference problem difficulty.

To test this hypothesis, we first examine the Dmax obtained using our sampling method-
ology over a range of tabu tenures. We consider 10 × 10 random JSPs, specifically the 42
instances with ≤ 100, 000 optimal solutions. In TSN1 , the mean tabu tenure L is dictated
by the interval [Lmin, Lmax]. Previously, we let [Lmin, Lmax] = [8, 14]; this particular value
was empirically determined by Taillard to yield good performance on the ft10 10 × 10
benchmark instance. We now test the impact of both smaller and larger tabu tenure in-
tervals on the performance of TSN1 . Based on extensive experimentation, we observe that
[5, 10] approximates the smallest tenure interval for which TSN1 is empirically PAC, i.e.,
avoids becoming trapped in either local optima or restricted regions of the search space.
On average, the Dmax obtained under the [8, 14] interval are roughly 6% greater than those
obtained under the [5, 10] interval, while the Dmax obtained under a larger (arbitrarily cho-
sen) [10, 18] interval are in turn roughly 5% greater than those observed under the [8, 14]
interval; we attribute the non-uniform growth rate to differences in the mean tabu tenures
under the [5, 10] and [8, 14] intervals versus the [8, 14] and [10, 16] intervals. Overall, these
results confirm the intuition that larger tabu tenures lead to increased |S lopt+|

′, as measured
by Dmax; we observe qualitatively identical changes in dtabu-opt.

To confirm that changes in Dmax yield corresponding changes in problem difficulty, we
compute the observed c under TSN1 for each problem instance over the three tabu tenure
intervals. Here, we consider all 100 instances in our 10 × 10 problem set; the implicit
assumption is that similar changes in Dmax hold for instances with > 100,000 optimal
solutions. Scatter-plots of the resulting c for [5, 10] versus [8, 14] and [8, 14] versus [10, 18]
tenure intervals are respectively shown in the left and right sides of Figure 13. The c under
the medium interval [8, 14] are roughly 95% larger than those observed under the smaller
[5, 10] interval, while the c obtained under the [10, 16] interval are roughly 60% greater than
those obtained under the [8, 14] interval; again, we attribute the non-uniform growth rate to
discrepancies in the difference in mean tabu tenure. We observe similar monotonic growth
in problem difficulty for a limited sample of even larger tenure intervals. Overall, the results
support our hypothesis that larger tabu tenures increase problem difficulty, specifically by
inflating |Slopt+|

′. Although not reported here, we additionally observe similar results on a
small sample of 6 × 6 workflow and flowshop JSPs.

Our experiments indicate that the tabu tenure L for TSN1 should be chosen as small as
possible while simultaneously avoiding search stagnation. In addition to providing the first
theoretically justified guideline for selecting a tabu tenure, this observation emphasizes the
potentially detrimental nature of short-term memory. In particular, the results presented
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Figure 13: Scatter-plots of the relative cost c required to locate an optimal solution under
TSN1 for small versus moderate tabu tenures (left figure) and moderate versus
large tabu tenures (right figure), for 10 × 10 random JSPs.

above suggest that any amount of short-term memory in excess of that which is required
to escape the attractor basins of local optima is likely to degrade the performance of TSN1 .

13. Implications and Conclusions

Our results provide a significant first step toward developing an understanding of the dy-
namics underlying tabu search. We have introduced a random walk model of Taillard’s
tabu search algorithm for the JSP that, despite its simplicity, accounts for nearly all of the
variability in the cost required to locate optimal solutions to random JSPs. Additionally,
the model accounts for similarly high proportions of the variability in the cost required to
locate both sub-optimal solutions to random JSPs and optimal solutions to more structured
JSPs. Our results indicate that search in Taillard’s algorithm can be viewed as a variant
of a straightforward one-dimensional random walk that exhibits two key types of bias: (1)
a bias toward solutions that are roughly equi-distant from the nearest optimal solution
and solutions that are maximally distant from the nearest optimal solution and (2) a bias
that tends to maintain consistent progress either toward or away from the nearest opti-
mal solution. In contrast to cost models of problem difficulty based on static search space
features, the random walk model is scalable and provides direct insight into the dynam-
ics of the search process. Additionally, we identified an unexpectedly strong link between
the run-time dynamics of tabu search and simple features of the underlying search space,
which provides an explanation for the initial success and ultimate failure of our earlier
dlopt-opt model of problem difficulty. Although we have not fully explored the predictive
capabilities of the random walk model, two novel behaviors predicted by the model have
been confirmed through experimentation on random JSPs: the failure of initial solutions
to significantly impact algorithm performance and the potentially detrimental nature of
short-term memory.
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Despite the success of the random walk model, several issues remain unresolved. For
example, it is unclear why TSN1 is unlikely to explore potentially large regions of Slopt+,
i.e., why random local optima are not necessarily representative of solutions visited by TSN1

during search. Similarly, a causal explanation for the bias toward solutions that are roughly
equi-distant from optimal solutions and solutions maximally distant from optimal solutions
is lacking, although preliminary evidence indicates the bias is simply due to the choice of
representation, i.e., the binary hypercube.

Perhaps the most important contribution of the random walk model is the foundation
it provides for future research. State-of-the-art tabu search algorithms for the JSP make
extensive use of long-term memory (Nowicki & Smutnicki, 2005), and it is unclear how
such memory will impact the structure of the random walk model. Moving beyond the JSP,
there is the question of generalization: Do similar results hold when considering tabu search
algorithms for other NP -hard problems, e.g., the quadratic assignment and permutation
flow-shop scheduling problems? Although the model and associated methodology can be
straightforwardly applied to other problems, representations, and even local search algo-
rithms, it is unclear a priori whether we can expect sufficient regularities in the resulting
transition probabilities to yield accurate predictions. This is especially true for problems in
which highly structured benchmarks are more prevalent, e.g., in SAT. Finally, the random
walk model is, at least currently, largely of only a posteriori use. It is unclear how such a
model might be leveraged in order to develop improved tabu search algorithms. For exam-
ple, although it is clear that the bias toward solutions that are distant from optimal solutions
should be minimized, it is far from obvious how this can be achieved. Similarly, another
potential application of the random walk model involves predicting problem difficulty; now
that the dominant factors influencing problem difficulty in the JSP are becoming better
understood, an obvious next step is to analyze whether it is possible to achieve accurate
estimates of these quantities with minimal or moderate computational effort.

The objective of our research was to “demystify” the behavior of tabu search algorithms,
using the JSP as a testbed. In this goal, we have succeeded. Our random walk model
captures the run-time dynamics of tabu search for the JSP accounts for the primary behavior
of interest: the cost required to locate optimal solutions to problem instances. The power of
the model is further illustrated by its ability to account for additional behavioral phenomena
and correctly predict novel behaviors. Through careful modeling and analysis we have
demonstrated that despite their effectiveness, tabu search algorithms for the JSP are in fact
quite simple in their operation. The random walk model should serve as a useful basis for
exploring similar issues in the context of both more advanced tabu search algorithms for the
JSP and tabu search algorithms for other NP -hard combinatorial optimization problems.
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